Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

КРУГОВОЙ ФРАКТАЛ -ОШИБОЧНАЯ ПРОГРАММА! ПАПА ЗибЕрт
Можешь обяснить подробно что как работает, и почему массу не задаем
Здравствуйте, Ильгиз. Математика - царица наук (Карл Гаусс). Изучение математики начинается с детского сада, когда нас учат считать и выполнять простые арифметические операции. Любой, даже самый простейший алгоритм будет связан с арифметическими...
Я хотел узнать математика это обязательно в программирование. Пять лет назад просто из любопытства я увлекся HTML потом изучил CSS и JvaScript потом изучил PHP и Java. Как то не задумывался и начал смотреть форумы и узнал что без математики не...
Все верно, но так же необходимо зайти в: Компоновщик -> Ввод -> Дополнительные зависимости Здесь необходимо нажать изменить и в Дополнительные зависимости прописать это: SDL2.lib SDL2main.lib SDL2test.lib Без этого не заработает. (MVS 2015)

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru
Быстро, надежно! http://tr-l.ru грузоперевозки в Перми автотранспортом!

Броуновское движение — беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.
При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времен). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная NА. Кроме поступательного Броуновского движения, существует также вращательное Броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного Броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Броуновское движение.

Сущность явления

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Теория броуновского движения

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения.В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц:

где D — коэффициент диффузии, R — универсальная газовая постоянная, T — абсолютная температура, NA — постоянная Авогадро, а — радиус частиц, ξ — динамическая вязкость.

Броуновское движение как немарковский
случайный процесс

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна — Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна — Смолуховского.
Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.