Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Рекурсия присутствует?
И где эти прикрепленные файлы?
Я код на C++ набрал сам. Строил кривую Безье, но "прилипал" к нулю. То есть я задаю точки далеко от нуля, а он строил из нуля, а потом только обходил предложенные точки. Потом я нашёл Ваш сайт и эту статью. Оказалось, что я забыл возвести t в...
просто я не так понял, здесь мы вращаем точки куба что вращает сам куб. Мне нужно вращать просто 3д объект , данный способ не подходит
Задавайте объект в мировых координатах. Вращайте его относительно мировой системы координат. А при отрисовке преобразуйте в экранные координаты. Посмотрите пример преобразования в экранные координаты.

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика


Кривая Минковского(иное название Колбаса Минковского) — классический геометрический фрактал, предложенный Минковским. Инициатором является отрезок, а генератором является ломаная из восьми звеньев (два равных звена продолжают друг друга)

Построение

Строится кривая следующим образом: изначально есть отрезок, который преобразуется в ломаную, а при каждой следующей итерации к каждому из полученных на шаге ранее звеньев ломаной применяется аналогичная процедура, что демонстрируется наглядно на рисунке ниже.

Свойства
  • Кривая Минковского нигде не дифференцируема и не спрямляема.
  • Кривая Минковского не имеет самопересечений.
  • Кривая Минковского имеет Хаусдорфову размерность ln8/ln4 = 3/2 (поскольку она состоит из восьми равных частей, каждая из которых подобна всей кривой с коэффициентом подобия 1/4).
  • Кривая Минковского имеет нулевую меру Лебега.