Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Как реализовать в данном примере границы расчёта?
Не работает, выводит это: Process terminated with status 4258096 (0 minute(s), 2 second(s)) при этом открывается консоль с тем же числом

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Георг Кантор (1845-1918) явился одним из основателей теории множеств. Он также придумал один из старейших фракталов — множество Кантора (описано им в 1883). На Западе подобные множества называют иногда пылью. Заметим, что существование этого фрактала отмечалось до этого Генри Смитом в 1875 году или еще ранее. Это множество хорошо известно как пример множества нулевой меры Лебега, чья мощность равна мощности континуума [0,1]. Фрактальные свойства пыли Кантора имеют огромное значение, особенно учитывая тот факт, что многие известные фракталы являются близкими родственниками этого фрактала.

Способ построения этого множества следующий. Берётся отрезок прямой единичной длины ([0,1]). Затем он делится на три равные части, и вынимается средний отрезок ([1/3, 2/3]). Это первый шаг итерационной процедуры. На втором шаге подобной процедуре деления на три равные части и последующего удаления середины подвергается каждый из двух оставшихся отрезков.

Этот процесс продолжается до бесконечности. Канторовым множеством называется множество всех тех точек, которые не были удалены ни на одном из бесконечного количества шагов данного процесса.

Выше изображены первые шесть шагов процедуры.

Некоторые свойства:
  • Канторово множество замкнуто
  • Канторово множество континуально. В частности,
  • Канторово множество не счётно

Демонстрационные примеры по теме