Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Пусть даны два отрезка. Первый задан точками P1(x1;y1) и P2(x2;y2). Второй задан точками P3(x3;y3) и P4(x4;y4).

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Рассмотрим отрезок P3P4 и точки P1 и P2.

Точка P1 лежит слева от прямой P3P4, для нее векторное произведение v1 > 0, так как векторы положительно ориентированы.
Точка P2 расположена справа от прямой, для нее векторное произведение v2 < 0, так как векторы отрицательно ориентированы.

Для того чтобы точки P1 и P2 лежали по разные стороны от прямой P3P4, достаточно, чтобы выполнялось условие v1v2 < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка P1P2 и точек P3 и P4.

Итак, если v1v2 < 0 и v3v4 < 0, то отрезки пересекаются.

Векторное произведение двух векторов вычисляется по формуле:

где:
ax, ay - координаты первого вектора,
bx, by - координаты второго вектора.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:P1 с координатами (x1;y1) и P2 с координатами (x2; y2). Соответственно вектор с началом в точке P1 и концом в точке P2 имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на прямой, то координаты вектора P1P равны (x - x1, y – y1).

С помощью векторного произведения условие коллинеарности векторов P1P и P1P2 можно записать так:
|P1P,P1P2|=0, т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0
или
(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Последнее уравнение переписывается следующим образом:
ax + by + c = 0,     (1)
где
a = (y2-y1),
b = (x1-x2),
c = x1(y1-y2) + y1(x2-x1)

Итак, прямую можно задать уравнением вида (1).

Как найти точку пересечения прямых?
Очевидное решение состоит в том, чтобы решить систему уравнений прямых:

ax1+by1=-c1
ax2+by2=-c2
    (2)

Ввести обозначения:

Здесь D – определитель системы, а Dx,Dy - определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если D ≠ 0, то система (2) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: x1=Dx/D, y1=Dy/D, которые называются формулами Крамера. Небольшое напоминание, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

Комментарии

Андрей-ка аватар
Опубликовано Андрей-ка в 26. Март 2015 - 15:43.

Довольно странновато видеть векторное произведение на плоскости. Как это?

admin аватар
Опубликовано admin в 26. Март 2015 - 22:05.

В данной статье рассматривается лишь направление вектора векторного произведения, т.е. рассчитывается значение координаты z и проверяется знак. Переводить при этом все вектора с плоскости в трехмерное пространство вовсе не обязательно, поскольку все построения остаются на плоскости.