Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Спасибо за реализацию, она действительно быстрая. Но не все линии отрисовывает в нужную сторону... Необходимо добавить проверку для случая X-линии if(y1 "<" y0) grad=-grad; и аналогично для Y-линии if(x1 "<" x0) grad=-grad; P.S. На...
Отличные уроки(учу GL по ним), только в renderScene нужно добавить очистку буфера цвета и буфера глубины. При изменении размеров треугольники размножаются)
как исправить это , сделал все по инструкции
Timer1 - выдает ошибку. Использовал IdleTimer1, работает! unit Unit1; {$mode objfpc}{$H+} interface uses Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls, ExtCtrls, OpenGLContext, GL, GLU; type { TForm1 } TForm1 =...
в коде присутствуют ошибки! // Считываем координаты procedure TForm1.getCoords(Sender: TObject); var j1:longint; begin n:= StrToInt(Edit2.Text); //число точек s1:=Edit1.Text; s2:=''; i := 1; j:=1; k:=0...

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru

Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения f(z)=0 алгоритмом Ньютона на комплексной плоскости. Для функции действительной переменной метод Ньютона часто называют методом касательных. Поясним суть этого метода.

Пусть нам задана функция f(x), для которой известно приближенное значение ее корня x1, а также значение функции в этой точке f(x1) и значение её первой производной f '(x1). Тогда, проводя касательную к графику функции f(x) в этой точке и определяя ее пересечение с осью Ox, мы получим уточненное положение корня x2.

Т. к. уравнение касательной к f(x) в точке x1 выглядит следующим образом:

y=f '(x1)(x-x1)+f(x1),

то, приравнивая y нулю, получаем, что уточненное значение корня x2 связано с предыдущим значением x1 соотношением

x2=x1-f(x1)/f '(x1)

Беря теперь значение x в качестве приближенного и повторяя эту процедуру, находим следующее приближение корня x3 и т.д. При некоторых условиях эта последовательность сходится к корню уравнения f(x)=0. Рассмотрим теперь комплексный случай. Рассмотрим уравнение f(z)=0 и последовательность

zn+1=zn-f(zn)/f '(zn)

Пусть f(z)=z3-1. Как известно, это уравнение имеет три корня ω1, ω2, ω3. При выборе различных z0 процесс будет сходится к различным корням. Обозначим эти области притяжения через A(ωi)={z0 | zn→ωi}. Артур Кэли поставил задачу описания областей A(ωi). Оказывается границы этих областей имеют фрактальную структуру.

Фрактал Ньютона