Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Здравствуйте, Ильгиз. Математика - царица наук (Карл Гаусс). Изучение математики начинается с детского сада, когда нас учат считать и выполнять простые арифметические операции. Любой, даже самый простейший алгоритм будет связан с арифметическими...
Я хотел узнать математика это обязательно в программирование. Пять лет назад просто из любопытства я увлекся HTML потом изучил CSS и JvaScript потом изучил PHP и Java. Как то не задумывался и начал смотреть форумы и узнал что без математики не...
Все верно, но так же необходимо зайти в: Компоновщик -> Ввод -> Дополнительные зависимости Здесь необходимо нажать изменить и в Дополнительные зависимости прописать это: SDL2.lib SDL2main.lib SDL2test.lib Без этого не заработает. (MVS 2015)
Спасибо за реализацию, она действительно быстрая. Но не все линии отрисовывает в нужную сторону... Необходимо добавить проверку для случая X-линии if(y1 "<" y0) grad=-grad; и аналогично для Y-линии if(x1 "<" x0) grad=-grad; P.S. На...
Отличные уроки(учу GL по ним), только в renderScene нужно добавить очистку буфера цвета и буфера глубины. При изменении размеров треугольники размножаются)

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru

Упаковка Лейбница (Аполлониево Множество) впервые была описана в письме Лейбница к де Броссу:

"...Представьте себе окружность, а затем впишите в нее еще три окружности наибольшего возможного радиуса, конгруэнтные друг другу: повторите аналогичную операцию с каждой из этих окружностей и с каждым промежутком между ними. А теперь вообразите, что этот процесс продолжен до бесконечности..."


- так впервые была описана конструкция, в последствии названная Бенуа Мандельбротом Упаковкой Лейбница.

Упаковка Лейбница похожа на более известный фрактал - Аполлониеву Сеть. Представляет она собой бесконечное количество окружностей вместе с их предельными точками.

Этот фрактал назван в честь Аполлония Пергского - древнегреческого математика, жившего в III в. до нашей эры. Он был представителем александрийской школы и верным последователем Евклида и известен, помимо прочего, тем, что составил алгоритм построения пяти окружностей, касательных к трем заданным окружностям. В том случае, когда заданные окружности взаимнокасательны , число аполлониевых кругов равно двум.

Совершим переход с плоскости в пространство. Возьмем четыре шара произвольного радиуса, и между ними впишем еще один, далее будем повторять эту процедуру до бесконечности. В итоге мы получим трехмерное Аполлониево Множество. И никто нам не мешает повторить этот процесс с гиперсферами в четырех, пяти и шести мерных пространствах.

Подытожим: множество Аполлона – это вид фрактала, который строится посредством постоянно уменьшающихся в диаметре окружностей в одной большой окружности. Каждая окружность в множестве Аполлона является «касательной» к смежным окружностям, другими словами круги в множестве Аполлона соприкасаются только в бесконечно малой точке.