Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Здравствуйте, Ильгиз. Математика - царица наук (Карл Гаусс). Изучение математики начинается с детского сада, когда нас учат считать и выполнять простые арифметические операции. Любой, даже самый простейший алгоритм будет связан с арифметическими...
Я хотел узнать математика это обязательно в программирование. Пять лет назад просто из любопытства я увлекся HTML потом изучил CSS и JvaScript потом изучил PHP и Java. Как то не задумывался и начал смотреть форумы и узнал что без математики не...
Все верно, но так же необходимо зайти в: Компоновщик -> Ввод -> Дополнительные зависимости Здесь необходимо нажать изменить и в Дополнительные зависимости прописать это: SDL2.lib SDL2main.lib SDL2test.lib Без этого не заработает. (MVS 2015)
Спасибо за реализацию, она действительно быстрая. Но не все линии отрисовывает в нужную сторону... Необходимо добавить проверку для случая X-линии if(y1 "<" y0) grad=-grad; и аналогично для Y-линии if(x1 "<" x0) grad=-grad; P.S. На...
Отличные уроки(учу GL по ним), только в renderScene нужно добавить очистку буфера цвета и буфера глубины. При изменении размеров треугольники размножаются)

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru


Фрактал "Звезда Дюрера" или "Пятиугольник Дюрера" был назван в честь немецкого живописца и графика Альбрехта Дюрера. Именно он в 1525 изобретает правило построения правильного пятиугольника.

Пример фрактала правильного пятиугольника.

В основу фрактала положен так называемый "расширенный" пятиугольник.
"Звезда Дюрера" выглядит как связка пятиугольников, сжатых вместе.
Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей, в которых в точности равно так называемой "золотой пропорции" (1.618033989 или 1/(2*cos72)) в качестве генератора.
Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.
Ниже изображено как построить "Звезду Дюрера" посредством множественного "вырезания" треугольников.

Демонстрационные примеры по теме

Скриншот к примеру
C++, SFML, Windows


Скриншот к примеру
C#, Windows, Windows API


Скриншот к примеру
GTK, Java, Linux


Скриншот к примеру
C++, Linux, Open GL


Скриншот к примеру
Pascal, Windows, Windows API