Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Рекурсия присутствует?
И где эти прикрепленные файлы?
Я код на C++ набрал сам. Строил кривую Безье, но "прилипал" к нулю. То есть я задаю точки далеко от нуля, а он строил из нуля, а потом только обходил предложенные точки. Потом я нашёл Ваш сайт и эту статью. Оказалось, что я забыл возвести t в...
просто я не так понял, здесь мы вращаем точки куба что вращает сам куб. Мне нужно вращать просто 3д объект , данный способ не подходит
Задавайте объект в мировых координатах. Вращайте его относительно мировой системы координат. А при отрисовке преобразуйте в экранные координаты. Посмотрите пример преобразования в экранные координаты.

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика


Многочлен Ньютона интерполяционный – как и другие интерполяционные формулы, служит для построения многочлена n-й степени, который совпадает в (n+1) точке co значениями неизвестной искомой функции у = f(x).

Пусть в точках х0, х1, …, хn+1 значения функции у = f(x) равны соответственно у0 = f(x0), y1 = f(x1), …, yn+1 = f(xn+1).

Построим интерполяционный многочлен Ньютона с помощью метода неопределенных коэффициентов. Для этого запишем искомый многочлен в виде
Pn(x) = b0 + b1(x – x0) + b2(x – x0)(x – x1) + b3(x – x0)(x – x1)(x – x2) + … + bn(x – x0)…(x – xn).(1)

Последовательно подставляя в формулу (1) вместо х данные значения х0, х1, ..., хn+1, получим для нахождения неопределенных коэффициентов b0, b1, ..., bn «треугольную» систему уравнений

При подстановке в равенство (1) вместо х числа х0 в правой части равенства обратились в нуль все слагаемые, кроме первого: там везде был множитель (х – х0), обратившийся в нуль; при подстановке х = х1 обратились в нуль все слагаемые, кроме первого и второго – они содержат множитель (х – х1) и т.д.

Полученную систему удобно решать: из первого её уравнения находим свободный член искомого многочлена b0; подставив его во второе уравнение, находим коэффициент b1 при первой степени х в искомом многочлене:

и т.д.

Для интерполяционного многочлена Ньютона можно выписать явные выражения коэффициентов через данные задачи, а также и оценки точности замены неизвестной функции f(x) этим многочленом.