Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

добрый день! при попытке компиляции выдает Source.obj : error LNK2001: неразрешенный внешний символ "__imp_glPointSize" 1>Source.obj : error LNK2001: неразрешенный внешний символ "__imp_glPopMatrix" 1>Source.obj : error LNK2001: неразрешенный...
Можно точно вот эту программу просто наоборот типа:4,3,2,1,4 вот так надо двигаться
Здравствуйте. Спасибо за полезную инфу про уравнения а не матрицы. Во всём интернете только матрицы. У Вас опечатка в уравнении вращения по Z в координате Y= надо минус добавить И ещё. Все предыдущие уравнения можно подставить в последнее уравнение...
WebGL API Tutorial WebGL wiki Adding 2D content to a WebGL context

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Для того, чтобы увидеть на плоскости монитора трехмерное изображение, нужно уметь задать способ отображения трехмерных точек в двумерные. В общем случае проекции преобразуют точки, заданные в системе координат размерностью n в точки системы координат размерностью меньшей, чем n. В нашем случае точки трехмерного пространства преобразуются в точки двумерного пространства.

Чтобы построить проекцию нужно задать точку, которая называется центром проекции. Проекции строятся с помощью проецирующих лучей или проекторов, которые выходят из центра проекции. Проекторы пересекают плоскость, которая называется проекционной или картинной плоскостью, и затем проходят через каждую точку трехмерного объекта и образуют тем самым проекцию.

Проецирование выполняется с помощью прямолинейных проекторов (проецирующих лучей), идущих из центра проекции через каждую точку объекта до пересечения с картинной поверхностью (поверхностью проекции). Будем рассматривать только плоские проекции, при которых поверхность проекции - плоскость в трехмерном пространстве.

По расположению центра проекции относительно плоскости проекции различаются центральная и параллельные проекции.

При параллельной проекции центр проекции находится на бесконечном расстоянии от плоскости проекции. Проекторы представляют собой пучок параллельных лучей. В этом случае необходимо задавать направление проецирования и расположение плоскости проекции. По взаимному расположению проекторов, плоскости проекции и главных осей координат различаются ортогональные, прямоугольные аксонометрические и косоугольные аксонометрические проекции.

При ортогональной проекции проекторы перпендикулярны плоскости проекции, а плоскость проекции перпендикулярна главной оси. Т.е. проекторы параллельны главной оси.

При аксонометрической проекции имеется одна из двух перпендикулярностей:
• при прямоугольной аксонометрической проекции проекторы перпендикулярны плоскости проекции, которая расположена под углом к главной оси;
• при косоугольной аксонометрической проекции проекторы не перпендикулярны плоскости проекции, но плоскость проекции перпендикулярна к главной оси.

Изображение, полученное при параллельном проецировании, не достаточно реалистично, но передаются точные форма и размеры, хотя и возможно различное укорачивание для различных осей.

При центральной проекции расстояние от центра проекции до плоскости проецирования конечно, поэтому проекторы представляют собой пучок лучей, исходящих из центра проекции. В этом случае надо задавать расположение и центра проекции и плоскости проекции. Изображения на плоскости проекции имеют т.н. перспективные искажения, когда размер видимого изображения зависит от взаимного расположения центра проекции, объекта и плоскости проекции. Из-за перспективных искажений изображения, полученные центральной проекцией, более реалистичны, но нельзя точно передать форму и размеры.

Одним из интересных свойств центральной проекции являются так называемые точки схода. Точка схода есть точка пересечения центральных проекций любой совокупности параллельный прямых, которые не параллельны проекционной плоскости. Существует бесконечное множество точек схода. Точка схода называется главной, если совокупность прямых параллельна одной из координатных осей. В зависимости от того, сколько координатных осей пересекает проекционную плоскость, различают одно-, двух- и трехточечные проекции.

Центральные проекции
Одно-, двух- и трехточечные центральные проекции

Классификация плоских проекций

Классификация плоских проекций