Пример построения центральной проекции куба смотрите на странице https://cgraph.ru/node/221
Чтобы построить проекцию нужно задать точку, которая называется центром проекции. Проекции строятся с помощью проецирующих лучей или проекторов, которые выходят из центра проекции. Проекторы пересекают плоскость, которая называется проекционной или картинной плоскостью, и затем проходят через каждую точку трехмерного объекта и образуют тем самым проекцию (см. "Классификация проекций").
Поскольку поверхность любого трехмерного объекта содержит бесконечное число точек, то необходимо задать способ описания поверхности объекта конечным числом точек для представления в компьютере. А именно, будем использовать линейное представление объектов в трехмерном пространстве с помощью отрезков прямых и плоских многоугольников. При этом отрезки прямых после перспективного преобразования переходят в отрезки прямых на проекционной плоскости. Это важное свойство центральной перспективы позволяет проецировать, т.е. производить вычисления только для конечных точек отрезков, а затем соединять проекции точек линиями уже на проекционной плоскости.
Точка A проецируется на экран как A'. Расстояние от наблюдателя до проекционной плоскости равно k. Определим координаты точки A' на экране. Обозначим их xэ и yэ. Из подобия треугольников AyAzN и yэON находим, что
аналогично для x: xэ = kx / (z+k).
Напомним, что k - это расстояние, а наблюдатель находится в точке N(0,0,-k).
Если точку наблюдения поместить в начало координат, а проекционную плоскость на расстояние α, то формулы для xэ и yэ примут вид:
xэ=kx/z , yэ=ky/z (2)
Формулы (1) более удобны при необходимости простым образом приближать или удалять наблюдателя от проекционной плоскости. Формулы (2) требуют меньше времени для вычислений за счет отсутствия операции сложения.