Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Пример, к которому вы оставили комментарий строит именно то самое изображение на языке с#, которое вам необходимо. Отличается только цветовая палитра.
Добрый день! Уже и не знаю куда обратиться. Нужно построить фрактал Жулиа на языке программирования C#. Что бы получилось данное изображение
Необходимо дополнение, как все это запустить, Где писать все эти команды, чтобы видеть результат. Я имею ввиду, что необходимо продемонстрировать полный код HTML-страницы со скриптом и тегами холста. Может даже сделать Урок 0 "Как начать рисовать в...
КРУГОВОЙ ФРАКТАЛ -ОШИБОЧНАЯ ПРОГРАММА! ПАПА ЗибЕрт
Можешь обяснить подробно что как работает, и почему массу не задаем

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru

Чтобы построить проекцию нужно задать точку, которая называется центром проекции. Про¬екции строятся с помощью проецирующих лучей или проекторов, которые выходят из центра проекции. Проекторы пересекают плоскость, которая называется проекционной или картинной плоскостью, и затем проходят через каждую точку трехмерного объекта и образуют тем самым проекцию (см. "Классификация проекций").

Поскольку поверхность любого трехмерного объекта содержит бесконечное число точек, то необходимо задать способ описания поверхности объекта конечным числом точек для представления в компьютере. А именно, будем использовать линейное представление объектов в трехмерном пространстве с помощью отрезков прямых и плоских многоугольников. При этом отрезки прямых после перспективного преобразования переходят в отрезки прямых на проекционной плоскости. Это важное свойство центральной перспективы позволяет проецировать, т.е. производить вычисления только для конечных точек отрезков, а затем соединять проекции точек линиями уже на проекционной плоскости.

Центральная (перспективная) проекция

Точка A проецируется на экран как A'. Расстояние от наблюдателя до проекционной плоскости равно k. Определим координаты точки A' на экране. Обозначим их xэ и yэ. Из подобия треугольников AyAzN и yэON находим, что

аналогично для x: xэ = kx / (z+k).
Напомним, что k - это расстояние, а наблюдатель находится в точке N(0,0,-k).
Если точку наблюдения поместить в начало координат, а проекционную плоскость на расстояние α, то формулы для xэ и yэ примут вид:
xэ=kx/z , yэ=ky/z (2)
Формулы (1) более удобны при необходимости простым образом приближать или удалять наблюдателя от проекционной плоскости. Формулы (2) требуют меньше времени для вычислений за счет отсутствия операции сложения.