Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Не работает, выводит это: Process terminated with status 4258096 (0 minute(s), 2 second(s)) при этом открывается консоль с тем же числом
А как можно добавить сюда глубину рекурсии, то есть сложность линии?
ошибка : пишет не удается открыть источник файл "SDL.h" Из за этой ошибки не удается запустить программу хотя я все сделал правильно , в результате код не работает : //подключим SDL и stdio #include #include //Некоторые константы нашего окна const...
Чет не работает, помогите, надо очень сильно
добрый день! при попытке компиляции выдает Source.obj : error LNK2001: неразрешенный внешний символ "__imp_glPointSize" 1>Source.obj : error LNK2001: неразрешенный внешний символ "__imp_glPopMatrix" 1>Source.obj : error LNK2001: неразрешенный...

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Рассмотрим ортогональные проекции, используемые в техническом черчении, в регламентированной для него правосторонней системе координат, когда ось Z изображается вертикальной. Затем будут проиллюстрированы аксонометрические проекции также в правосторонней системе координат, но уже более близкой к машинной графике (ось Y вертикальна, ось X направлена горизонтально вправо, а ось Z - от экрана к наблюдателю). Наконец выведем матрицы преобразования в левосторонней системе координат, часто используемой в машинной графике, с вертикальной осью Y, осью X, направленной вправо и осью Z, направленной от наблюдателя.

Наиболее широко, особенно, в САПР используются ортогональные проекции (виды). Вид - ортогональная проекция обращенной к наблюдателю видимой части поверхности предмета, расположенного между наблюдателем и плоскостью чертежа.

В техническом черчении за основные плоскости проекций принимают шесть граней куба (рис. 1).


Рис.1: Ортогональные проекции (основные виды) и их расположение на листе чертежа

1. Вид спереди, главный вид, фронтальная проекция, (на заднюю грань V),
2. Вид сверху, план, горизонтальная проекция, (на нижнюю грань H),
3. Вид слева, профильная проекция, (на правую грань W),
4. Вид справа (на левую грань),
5. Вид снизу (на верхнюю грань),
6. Вид сзади (на переднюю грань).

Очевидно, что при ортогональной проекции не происходит изменения ни углов, ни масштабов.

При аксонометрическом проецировании сохраняется параллельность прямых, а углы изменяются; измерение же расстояний вдоль каждой из координатных осей в общем случае должно выполняться со своим масштабным коэффициентом.

При изометрических проекциях укорачивания вдоль всех координатных осей одинаковы, поэтому можно производить измерения вдоль направлений осей с одним и тем же масштабом (отсюда и название изометрия). На рис.2 приведена (аксонометрическая прямоугольная) изометрическая проекция куба со стороной A. При этой проекции плоскость проецирования наклонена ко всем главным координатным осям под одинаковым углом. Стандартом регламентируется коэффициент сжатия, равный 0.82, а также расположение и взаимные углы главных координатных осей, равные 120o как это показано в левом верхнем углу рисунка. Обычно сжатие не делается.


Рис. 2: Аксонометрическая прямоугольная изометрическая проекция куба со стороной A

При диметрической проекции две из трех осей сокращены одинаково, т.е. из трех углов между нормалью к плоскости проекции и главными координатными осями два угла одинаковы. На рис.3 приведена (аксонометрическая прямоугольная) диметрическая проекция куба со стороной A. Там же показаны регламентируемые расположение осей и коэффициенты сжатия. Обычно вместо коэффициента сжатия 0.94 используется 1, а вместо 0.47 - 0.5.


Рис. 3: Аксонометрическая прямоугольная диметрическая проекция куба со стороной A

В косоугольных проекциях плоскость проекции перпендикулярна главной координатной оси, а проекторы расположены под углом к ней. Таким образом, аксонометрические косоугольные проекции сочетают в себе свойства ортогональных и аксонометрических прямоугольных проекций.

Наиболее употребимы два вида косоугольной проекции - фронтальная (косоугольная) диметрия (проекция Kabinett - Кабине) и горизонтальная (косоугольная) изометрия (проекция Kavalier - Кавалье) или военная перспектива.

В случае фронтальной (косоугольной) диметрии при использовании правосторонней системы координат экрана плоскость проецирования перпендикулярна оси Z. Ось X направлена горизонтально вправо. Ось Z изображается по углом в 45o относительно горизонтального направления. Допускается угол наклона в 30o и 60o. При этом отрезки, перпендикулярные плоскости проекции, при проецирования сокращаются до 1/2 их истинной длины. На рис.4 приведена (аксонометрическая косоугольная) фронтальная диметрическая проекция куба со стороной A, там же показаны регламентируемые коэффициент сжатия, равный 0.5 и расположение осей.


Рис. 4: Аксонометрическая косоугольная фронтальная диметрическая проекция куба со стороной A

В случае же (аксонометрической косоугольной) горизонтальной изометрии, как следует из названия, плоскость проецирования перпендикулярна оси Y а укорачивания по всем осям одинаковы и равны 1. Угол поворота изображения оси X относительно горизонтального направления составляет 30o. Допускается 45o и 60o при сохранении угла 90o между изображениями осей X и Z. Иллюстрация этого приведена на рис. 5.


Рис. 5: Аксонометрическая косоугольная горизонтальная изометрическая проекция куба со стороной A