Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Men dating men savoir faire out of, connection, and the beauty of relationships in their own unique way. https://analxxx... In a life that embraces distinctiveness and inclusivity, same-sex relationships keep found their place. Men who ancient men...
Пиривет сайт с работой закладчиком Работа ежедневные выплаты Если у вас небольшой доход или его вообще нет, то стоит обратить внимание на возможность подработки курьером. Это простая и хорошо оплачиваемая работа.
Последнее из блога https://fkmed.r... Оплата и доставка Условия возврата Гарантия качества https://fkmed.r... Медицинская одежда в розницу https://fkmed.r... Красота и свобода выбора https://fkmed.r... Как купить медицинский костюм в сети магазинов
Фамилия автора Вичек -- венг. Vicsek Tamás. Висекк это двойная не правильная транскрипция с венгерского на английски и с английского на русский. Поправьте пожалуйста.
Men dating men experience love, consistency, and the dream of relationships in their own unmatched way. https://voyeurp... In a superb that embraces diversity and inclusivity, same-sex relationships suffer with develop their place. Men who obsolete...

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Теорема Бояйи-Гервина
Пусть P и Q два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники A1,....,An и B1,....,Bn, так что для любого i € (1,...,n) многоугольник Ai конгруэнтен Bi. То есть равносоставлены.

Схема доказательства
Главным фактом, используемым при доказательстве, является транзитивность равносоставленности, то есть утверждение о том, что если многоугольник P равносоставлен Q и многоугольник Q равносоставлен многоугольнику R, то P равносоставлен R. Это утверждение очевидно если рассмотреть разбиение многоугольника Q одновременно по всей совокупности разделяющих линий, определяющих его разбиение при обоих переходах P→Q и Q→R.

Пользуясь этой леммой, теорему можно свести к более простой:
Любой многоугольник равносоставлен прямоугольнику той же площади с единичной высотой.

Последнее утверждение доказывается пошагово сведением задачи к разным частным случаям. Во-первых, рассматривается триангуляция многоугольника, что позволяет свести задачу к аналогичному утверждению только для треугольников (получившиеся прямоугольники можно будет просто соединить ввиду одинаковой высоты). Далее треугольник через отсечение верхней части, разбиении её на две части по линии высоты и приклеивание их по бокам к нижней части оказывается равносоставлен некоторому прямоугольнику.

Последним шагом в доказательстве теоремы является доказательство равносоставленности любых двух прямоугольников одинаковой площади. Это достигается через указание равносоставленности всех параллелограммов с одинаковой длиной основания, и через преобразование таким образом одного прямоугольника в параллелограмм с длиной боковой стороны, равной одной из сторон второго прямоугольника.