Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Спасибо за реализацию, она действительно быстрая. Но не все линии отрисовывает в нужную сторону... Необходимо добавить проверку для случая X-линии if(y1 "<" y0) grad=-grad; и аналогично для Y-линии if(x1 "<" x0) grad=-grad; P.S. На...
Отличные уроки(учу GL по ним), только в renderScene нужно добавить очистку буфера цвета и буфера глубины. При изменении размеров треугольники размножаются)
как исправить это , сделал все по инструкции
Timer1 - выдает ошибку. Использовал IdleTimer1, работает! unit Unit1; {$mode objfpc}{$H+} interface uses Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls, ExtCtrls, OpenGLContext, GL, GLU; type { TForm1 } TForm1 =...
в коде присутствуют ошибки! // Считываем координаты procedure TForm1.getCoords(Sender: TObject); var j1:longint; begin n:= StrToInt(Edit2.Text); //число точек s1:=Edit1.Text; s2:=''; i := 1; j:=1; k:=0...

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru
На сайте http://3d-artlines.ru можно купить трехмерную ручку Myriwell.

Дерево Пифагора — разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны».


История

Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. В наш век эта фигура Пифагора выросла в целое дерево. Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время второй мировой войны, используя обычную чертёжную линейку.


Особенности

Одним из свойств дерева Пифагора является то, что если площадь первого квадрата равна единице, то на каждом уровне сумма площадей квадратов тоже будет равна единице.

Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора. Если изображать только отрезки, соединяющие каким-либо образом выбранные «центры» треугольников, то получается обнаженное дерево Пифагора.


Алгоритм:


1) Строим вертикальный отрезок
2) Из верхнего конца этого отрезка рекурсивно строим еще 2 отрезка под определенными углами
3) Вызываем функцию построения двух последующих отрезков для каждой ветви дерева

Примеры


Классическое дерево Пифагора

Обдуваемое ветром дерево Пифагора

Обнаженное дерево Пифагора

Обнаженное обдуваемое ветром дерево Пифагора