Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Men dating men savoir faire out of, connection, and the beauty of relationships in their own unique way. https://analxxx... In a life that embraces distinctiveness and inclusivity, same-sex relationships keep found their place. Men who ancient men...
Пиривет сайт с работой закладчиком Работа ежедневные выплаты Если у вас небольшой доход или его вообще нет, то стоит обратить внимание на возможность подработки курьером. Это простая и хорошо оплачиваемая работа.
Последнее из блога https://fkmed.r... Оплата и доставка Условия возврата Гарантия качества https://fkmed.r... Медицинская одежда в розницу https://fkmed.r... Красота и свобода выбора https://fkmed.r... Как купить медицинский костюм в сети магазинов
Фамилия автора Вичек -- венг. Vicsek Tamás. Висекк это двойная не правильная транскрипция с венгерского на английски и с английского на русский. Поправьте пожалуйста.
Men dating men experience love, consistency, and the dream of relationships in their own unmatched way. https://voyeurp... In a superb that embraces diversity and inclusivity, same-sex relationships suffer with develop their place. Men who obsolete...

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Эта фигура — один из первых исследованных учеными фракталов. Она получается из трех копий кривой Коха, которая впервые появилась в статье шведского математика Хельге фон Коха в 1904 году. Эта кривая была придумана как пример непрерывной линии, к которой нельзя провести касательную ни в одной точке. Линии с таким свойством были известны и раньше (Карл Вейерштрасс построил свой пример еще в 1872 году), но кривая Коха замечательна простотой своей конструкции. Не случайно его статья называется «О непрерывной кривой без касательных, которая возникает из элементарной геометрии».

Как по шагам строится кривая Коха.

Первая итерация — просто начальный отрезок. Потом он делится на три равные части, центральная достраивается до правильного треугольника и затем выкидывается. Получается вторая итерация — ломаная линия, состоящая из четырех отрезков. К каждому из них применяется такая же операция, и получается четвертый шаг построения. Продолжая в том же духе, можно получать всё новые и новые линии (все они будут ломаными). А то, что получится в пределе (это уже будет воображаемый объект), и называется кривой Коха.

Основные свойства кривой Коха

1.Она непрерывна, но нигде не дифференцируема. Грубо говоря, именно для этого она и была придумана — как пример такого рода математических «уродцев».

2. Имеет бесконечную длину. Пусть длина исходного отрезка равна 1. На каждом шаге построения мы заменяем каждый из составляющих линию отрезков на ломаную, которая в 4/3 раза длиннее. Значит, и длина всей ломаной на каждом шаге умножается на 4/3: длина линии с номером n равна (4/3)n–1. Поэтому предельной линии ничего не остается, кроме как быть бесконечно длинной.

3. Снежинка Коха ограничивает конечную площадь. И это при том, что ее периметр бесконечен. Это свойство может показаться парадоксальным, но оно очевидно — снежинка полностью помещается в круг, поэтому ее площадь заведомо ограничена. Площадь можно посчитать, и для этого даже не нужно особых знаний — формулы площади треугольника и суммы геометрической прогрессии проходят в школе. Для интересующихся вычисление приведено ниже мелким шрифтом.

Пусть сторона исходного правильного треугольника равна a. Тогда его площадь. Сначала сторона равна 1, а площадь: . Что происходит при увеличении итерации? Можно считать, что к уже имеющемуся многоугольнику пристраиваются маленькие равносторонние треугольнички. В первый раз их всего 3, а каждый следующий раз их в 4 раза больше чем было в предыдущий. То есть на n-м шаге будет достроено Tn = 3 · 4n–1 треугольничков. Длина стороны каждого из них составляет треть от стороны треугольника, достроенного на предыдущем шаге. Значит, она равна (1/3)n. Площади пропорциональны квадратам сторон, поэтому площадь каждого треугольничка равна . При больших значениях n это, кстати, очень мало. Суммарный вклад этих треугольничков в площадь снежинки равен Tn · Sn = 3/4 · (4/9)n · S0. Поэтому после n-го шага площадь фигуры будет равна сумме S0 + T1 · S1 + T2 · S2 + ... +Tn · Sn = . Снежинка получается после бесконечного числа шагов, что соответствует n → ∞. Получается бесконечная сумма, но это сумма убывающей геометрической прогрессии, для нее есть формула: . Площадь снежинки равна .


Варианты построения снежинки Коха

Снежинка Коха «наоборот» получается, если строить кривые Коха внутрь исходного равностороннего треугольника.

Линии Чезаро. Вместо равносторонних треугольников используются равнобедренные с углом при основании от 60° до 90°. На рисунке угол равен 88°.


Квадратный вариант. Тут достраиваются квадраты.


Трехмерные аналоги. Пирамида Коха

.

Демонстрационные примеры по теме

Скриншот к примеру
Windows, Windows API, C#


Скриншот к примеру
Open GL, Windows, Pascal


Скриншот к примеру
JavaScript


Скриншот к примеру
Пылов Игорь
Windows, Windows API, Java