Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Сейчас проверила нашла причину не запускания // Создание контекста воспроизведения OpenGL и привязка его к панели на форме OpenGLControl1:=TOpenGLControl.Create(Self); with OpenGLControl1 do begin Name:='OpenGLControl1'; //вот тут...
Ну..кажется что то пошло не так http://pp.usera...
Комментарии на английском переведите на русский. Дополните код комментариями, чтоб было понятно как работает алгоритм
Пример, к которому вы оставили комментарий строит именно то самое изображение на языке с#, которое вам необходимо. Отличается только цветовая палитра.

Счетчики и рейтинг

Рейтинг@Mail.ru

Графика в пространстве (3D)

Матрицей поворота (или матрицей направляющих косинусов) называется ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице.

Кватернионы были придуманы Роуэном Уильямом Гамильтоном как альтернатива матричным вращениям. Вращение при помощи кватернионов сводится к умножению чисел, что очень просто в программной реализации.

Алгоритм:
Входные данные:
1) угол θ на который производится вращение.
2) координаты x, y, z вращаемой точки.
3) координаты i, j, k направляющего единичного вектора, вокруг которого происходит вращение.

Рассмотрим ортогональные проекции, используемые в техническом черчении, в регламентированной для него правосторонней системе координат, когда ось Z изображается вертикальной. Затем будут проиллюстрированы аксонометрические проекции также в правосторонней системе координат, но уже более близкой к машинной графике (ось Y вертикальна, ось X направлена горизонтально вправо, а ось Z - от экрана к наблюдателю).

Чтобы построить проекцию нужно задать точку, которая называется центром проекции. Про¬екции строятся с помощью проецирующих лучей или проекторов, которые выходят из центра проекции. Проекторы пересекают плоскость, которая называется проекционной или картинной плоскостью, и затем проходят через каждую точку трехмерного объекта и образуют тем самым проекцию (см. "Классификация проекций").

Для того, чтобы увидеть на плоскости монитора трехмерное изображение, нужно уметь задать способ отображения трехмерных точек в двумерные. В общем случае проекции преобразуют точки, заданные в системе координат размерностью n в точки системы координат размерностью меньшей, чем n. В нашем случае точки трехмерного пространства преобразуются в точки двумерного пространства.

Уравнение прямой, проходящей через две различные точки
( х1, у1, z1 )
и ( х2, у2 , z2 ):

Параметрическое уравнение прямой, проходящей через точку ( х0 , у0 , z0 ) и параллельной направляющему вектору прямой ( a, b, с ) :