Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

См. исправленный алгоритм Брезенхема построения окружности здесь https://cgraph.ru/node/308

Во многих областях приложений, таких как, например, системы автоматизированного проектирования машиностроительного направления, естественными графическими примитивами, кроме отрезков прямых и строк текстов, являются и конические сечения, т.е. окружности, эллипсы, параболы и гиперболы. Наиболее употребительным примитивом, естественно, является окружность. Один из наиболее простых и эффективных алгоритмов генерации окружности разработан Брезенхемом.

Алгоритм Брезенхема

Для простоты и без ограничения общности рассмотрим генерацию 1/8 окружности, центр которой лежит в начале координат. Остальные части окружности могут быть получены последовательными отражениями (использованием симметрии точек на окружности относительно центра и осей координат).

Окружность с центром в начале координат описывается уравнением:

X2 + Y2 = R2

Алгоритм Брезенхема пошагово генерирует очередные точки окружности, выбирая на каждом шаге для занесения пиксела точку растра Pi(Xi, Yi), ближайшую к истинной окружности, так чтобы ошибка:

Ei(Pi) = (Xi2 + Yi2) - R2

была минимальной. Причем, как и в алгоритме Брезенхема для генерации отрезков, выбор ближайшей точки выполняется с помощью анализа значений управляющих переменных, для вычисления которых не требуется вещественной арифметики. Для выбора очередной точки достаточно проанализировать знаки.

Рассмотрим генерацию 1/8 окружности по часовой стрелке, начиная от точки X=0, Y=R.

Проанализируем возможные варианты занесения i+1-й точки, после занесения i-й.

Рис. 1: Варианты расположения очередного пиксела окружности

При генерации окружности по часовой стрелке после занесения точки (Xi, Yi) следующая точка может быть (см. рис. 0.1а) либо Pg = (Xi+1, Yi) - перемещение по горизонтали, либо Pd = (Xi+1, Yi-1) - перемещение по диагонали, либо Pv = (Xi, Yi-1) - перемещение по вертикали.

Для этих возможных точек вычислим и сравним абсолютные значения разностей квадратов расстояний от центра окружности до точки и окружности:

|Dg| =| (X+1)2+Y2-R2 |
|Dd|=| (X+1)2+(Y-1)2-R2 |
|Dv|=| X2+(Y-1)2-R2 |

Выбирается и заносится та точка, для которой это значение минимально.

Выбор способа расчета определяется по значению Dd. Если Dd < 0, то диагональная точка внутри окружности. Это варианты 1-3 (см. рис. 0.1б). Если Dd > 0, то диагональная точка вне окружности. Это варианты 5-7. И, наконец, если Dd = 0, то диагональная точка лежит точно на окружности. Это вариант 4. Рассмотрим случаи различных значений Dd в только что приведенной последовательности.

Случай Dd < 0

Здесь в качестве следующего пиксела могут быть выбраны или горизонтальный - Pg или диагональный - Pd.

Для определения того, какой пиксел выбрать Pg или Pd составим разность:

di = |Dg| - |Dd| = |(X+1)2 + Y2 - R2| - |(X+1)2 + (Y-1)2 - R2|
И будем выбирать точку Pg при di <= 0, в противном случае выберем Pd.

Рассмотрим вычисление di для разных вариантов.

Для вариантов 2 и 3:

Dg >= 0 и Dd < 0, так как горизонтальный пиксел либо вне, либо на окружности, а диагональный внутри.

di = (X+1)2 + Y2 - R2 + (X+1)2 + (Y-1)2 - R2;
Добавив и вычтя (Y-1)2 получим:

di = 2 ·[(X+1)2 + (Y-1)2 - R2] + 2·Y - 1
В квадратных скобках стоит Dd, так что

di = 2 ·(Dd + Y) - 1

Для варианта 1:

Ясно, что должен быть выбран горизонтальный пиксел Pg. Проверка компонент di показывает, что Dg < 0 и Dd < 0, причем di < 0, так как диагональная точка больше удалена от окружности, т.е. по критерию di < 0 как и в предыдущих случаях следует выбрать горизонтальный пиксел Pg, что верно.

Случай Dd > 0

Здесь в качестве следующего пиксела могут быть выбраны или диагональный - Pd или вертикальный Pv.

Для определения того, какую пиксел выбрать Pd или Pv составим разность:

si = |Dd| - |Dv| = |(X+1)2 + (Y-1)2 - R2| - |X2 + (Y-1)2 - R2|
Если si <= 0, то расстояние до вертикальной точки больше и надо выбирать диагональный пиксел Pd, если же si > 0, то выбираем вертикальный пиксел Pv.

Рассмотрим вычисление si для разных вариантов.

Для вариантов 5 и 6:

Dd > 0 и Dv <= 0, так как диагональный пиксел вне, а вертикальный либо вне либо на окружности.

si = (X+1)2 + (Y-1)2 - R2 + X2 + (Y-1)2 - R2;
Добавив и вычтя (X+1)2 получим:

si = 2 ·[(X+1)2 + (Y-1)2 - R2] - 2·X - 1
В квадратных скобках стоит Dd, так что

si = 2 ·(Dd - X) - 1

Случай Dd = 0

Для компонент di имеем: Dg > 0 и Dd = 0, следовательно по критерию di > 0 выбираем диагональный пиксел.

С другой стороны, для компонент si имеем: Dd = 0 и Dv < 0, так что по критерию si <= 0 также выбираем диагональный пиксел.

Итак:

Dd < 0

di <= 0 - выбор горизонтального пиксела Pg

di > 0 - выбор диагонального пиксела Pd

Dd > 0

si <= 0 - выбор диагонального пиксела Pd

si > 0 - выбор вертикального пиксела Pv

Dd = 0

выбор диагонального пиксела Pd.

Выведем рекуррентные соотношения для вычисления Dd для (i+1)-го шага, после выполнения i-го.

  1. Для горизонтального шага к Xi+1, Yi

    Xi+1 = Xi + 1
    Yi+1 = Yi
    Ddi+1 = (Xi+1+1)2 + (Yi+1-1)2 - R2 =
    Xi+12 + 2·Xi+1 + 1 + (Yi+1-1)2 - R2 =
    (Xi+1)2 + (Yi-1)2 - R2 + 2·Xi+1 + 1 =
    Ddi + 2·Xi+1 + 1

  2. Для диагонального шага к Xi+1, Yi-1

    Xi+1 = Xi + 1
    Yi+1 = Yi - 1
    Ddi+1 = Ddi + 2 ·Xi+1 - 2 ·Yi+1 + 2

  3. Для вертикального шага к Xi, Yi-1

    Xi+1 = Xi
    Yi+1 = Yi - 1
    Ddi+1 = Ddi - 2 ·Yi+1 + 1