Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Биоморфы

Биомо́рфы (от греч. bios - жизнь и morphe – форма) — термин, предложенный Клиффордом Пикоувером для обозначения особым образом построенных алгебраических фракталов. Пикоувер первым заметил, что появляющиеся картинки очень похожи на клетки живых организмов, а иногда даже и на настоящие организмы. Он и предложил жуткое и модное слово «биоморфы», то есть нечто, похожее на организм. К особым группам биоморфов относятся лишайники, мхи, хвощи, плауны, папоротники. Основными биоморфами среди высших растений являются деревья, кустарники, кустарнички, полукустарники и полукустарнички, полутравы и травы.

Самое интересное, что все эти организмы порождаются простейшим алгоритмом многократным возведением в квадрат комплексного числа. Комплексное число состоит из реальной (обычного числа) и мнимой части. Мнимая часть содержит квадратный корень из -1, i=(-1)^(1/2). Если на плоскости по горизонтальной оси откладывать реальные числа, а по вертикальной мнимые, то каждому комплексному числу будет соответствовать точка на этой плоскости. Возведем число в квадрат — появляется новое число, еще раз возведем в квадрат (или любую другую степень) и прибавим какое-то фиксированное постоянное число, появятся новые числа. Потом эту простейшую операцию повторим многократно с получающимся каждый раз новым комплексным числом. Полученные таким образом комплексные числа строим в системе координат, при этом получаются самые причудливые картины.
Биоморфы Пикоувера населяют комплексную плоскость. Каждый биоморф строится путем многочисленных итераций, или последовательных вычислений определенной математической функции, путем повторяющихся математических операций. На каждом шаге итерационного процесса результат предыдущего шага принимается за исходное значение переменной.
Рассмотрим, например, биоморф на картинке.

Он получен с помощью итерационных вычислений по формуле Zn+1=Z9n+C. Исходное значение комплексной переменной возводится в девятую степень, и к результату прибавляется фиксированное комплексное число С. Затем те же арифметические действия применяются к сумме Z1, получается значение Z2 и т.д.


Биоморф вида z'=z4+c


Биоморф вида z'=z3 + c


Биоморф вида вида z'=zz + z5 + c, z'=zz + z6 + c.