Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения f(z)=0 алгоритмом Ньютона на комплексной плоскости. Для функции действительной переменной метод Ньютона часто называют методом касательных. Поясним суть этого метода.

Пусть нам задана функция f(x), для которой известно приближенное значение ее корня x1, а также значение функции в этой точке f(x1) и значение её первой производной f '(x1). Тогда, проводя касательную к графику функции f(x) в этой точке и определяя ее пересечение с осью Ox, мы получим уточненное положение корня x2.

Т. к. уравнение касательной к f(x) в точке x1 выглядит следующим образом:

y=f '(x1)(x-x1)+f(x1),

то, приравнивая y нулю, получаем, что уточненное значение корня x2 связано с предыдущим значением x1 соотношением

x2=x1-f(x1)/f '(x1)

Беря теперь значение x в качестве приближенного и повторяя эту процедуру, находим следующее приближение корня x3 и т.д. При некоторых условиях эта последовательность сходится к корню уравнения f(x)=0. Рассмотрим теперь комплексный случай. Рассмотрим уравнение f(z)=0 и последовательность

zn+1=zn-f(zn)/f '(zn)

Пусть f(z)=z3-1. Как известно, это уравнение имеет три корня ω1, ω2, ω3. При выборе различных z0 процесс будет сходится к различным корням. Обозначим эти области притяжения через A(ωi)={z0 | zn→ωi}. Артур Кэли поставил задачу описания областей A(ωi). Оказывается границы этих областей имеют фрактальную структуру.

Фрактал Ньютона