Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

dobryj den, popytalas otkryt prikreplionnyj fail ctoby posmotret kak rabotaet, no mne ego ne pokazyvaet vydajet osibku. Pochemu?
Очень интересно! ии сайт крутой жалко что умирает(
У Вас число превысит максимальное число int. Можно использовать в Вашем случае uint, но лучше все переписать на double.
Добавление к программе строки glutReshapeFunc(changeSize); приводит к тому, что треугольник перестаёт совсем отрисовываться.
Выдаёт ошибку glut32.dll не найден! При том, что он лежит в System32! Всё решил) Нужно отправить не в System32, а в System.

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д. На рисунке показаны первые три шага.
Построение треугольника Серпинского
Выкидывание центральных треугольников — не единственный способ получить в итоге треугольник Серпинского. Можно двигаться «в обратном направлении»: взять изначально «пустой» треугольник, затем достроить в нём треугольник, образованный средними линиями, затем в каждом из трех угловых треугольников сделать то же самое, и т. д. Поначалу фигуры будут сильно отличаться, но с ростом номера итерации они будут всё больше походить друг на друга, а в пределе совпадут.
Построение треугольника Серпинского «в обратном направлении»
Следующий способ получить треугольник Серпинского еще больше похож на обычную схему построения геометрических фракталов с помощью замены частей очередной итерации на масштабированный фрагмент. Здесь на каждом шаге составляющие ломаную отрезки заменяются на ломаную из трех звеньев (она сама получается в первой итерации). Откладывать эту ломаную нужно попеременно то вправо, то влево. Видно, что уже восьмая итерация очень близка к фракталу, и чем дальше, тем ближе будет подбираться к нему линия.
Еще один способ получить треугольник Серпинского
Но и на этом не всё. Оказывается, треугольник Серпинского получается в результате одной из разновидностей случайного блуждания точки на плоскости. Этот способ называется «игрой Хаос». С его помощью можно построить и некоторые другие фракталы.

Суть «игры» такова. На плоскости зафиксирован правильный треугольник A1A2A3. Отмечают любую начальную точку B0. Затем случайным образом выбирают одну из трех вершин треугольника и отмечают точку B1 — середину отрезка с концами в этой вершине и в B0 (на рисунке справа случайно выбралась вершина A1). То же самое повторяют с точкой B1, чтобы получить B2. Потом получают точки B3, B4, и т. д. Важно, чтобы точка «прыгала» случайным образом, то есть чтобы каждый раз вершина треугольника выбиралась случайно, независимо от того, что было выбрано в предыдущие шаги. Удивительно, что если отмечать точки из последовательности Bi, то вскоре начнет проступать треугольник Серпинского. Ниже изображено, что получается, когда отмечено 100, 500 и 2500 точек.Игра Хаос
100, 500 и 2500 точек" align="center" />

Некоторые свойства

Фрактальная размерность log23 ≈ 1,584962... . Треугольник Серпинского состоит из трех копий самого себя, каждая в два раза меньше. Взаимное расположение их таково, что если уменьшить клеточки сетки в два раза, то число квадратиков, пересекающихся с фракталом, утроится. То есть N(δ/2) = 3N(δ). Если сначала размер клеток был 1, а с фракталом пересекалось N0 из них (N(1) = N0), то N(1/2) = 3N0, N(1/4) = 32N0, ..., N(1/2k) = 3kN0. Отсюда получается, что N(δ) пропорционально , и по определению фрактальной размерности она равна как раз log23.
Треугольник Серпинского имеет нулевую площадь. Это означает, что в фрактал не влезет ни один, даже очень маленький, кружок. То есть, если отталкиваться от построения первым способом, из треугольника «вынули» всю внутренность: после каждой итерации площадь того, что остается, умножается на 3/4, то есть становится всё меньше и стремится к 0. Это не строгое доказательство, но другие способы построения могут только усилить уверенность, что это свойство всё-таки верно.
Неожиданная связь с комбинаторикой. Если в треугольнике Паскаля с 2n строками покрасить все четные числа белым, а нечетные — черным, то видимые числа образуют треугольник Серпинского (в некотором приближении).

Варианты Ковер (квадрат, салфетка) Серпинского.

Квадратная версия была описана Вацлавом Серпинским в 1916 году. Ему удалось доказать, что любая кривая, которую можно нарисовать на плоскости без самопересечений, гомеоморфна какому-то подмножеству этого дырявого квадрата. Как и треугольник, квадрат можно получить из разных конструкций. Справа изображен классический способ: разделение квадрата на 9 частей и выбрасывание центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д.
Ковер Серпинского, первые 5 итераций
Как и у треугольника, у квадрата нулевая площадь. Фрактальная размерность ковра Серпинского равна log38, вычисляется аналогично размерности треугольника.

Пирамида Серпинского.

Один из трехмерных аналогов треугольника Серпинского. Строится аналогично с учетом трехмерности происходящего: 5 копий начальной пирамиды, сжатой в два раза, составляют первую итерацию, ее 5 копий составят вторую итерацию, и т. д. Фрактальная размерность равна log25. У фигуры нулевой объем (на каждом шаге половина объема выбрасывается), но при этом площадь поверхности сохраняется от итерации к итерации, и у фрактала она такая же, как и у начальной пирамиды.

Губка Менгера.

Обобщение ковра Серпинского в трехмерное пространство. Чтобы построить губку, нужно бесконечное повторение процедуры: каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших. Поэтому фрактальная размерность равна log320. Этот фрактал является универсальной кривой: любая кривая в трехмерном пространстве гомеоморфна некоторому подмножеству губки. У губки нулевой объем (так как на каждом шаге он умножается на 20/27), но при этом бесконечно большая площадь.

Демонстрационные примеры по теме

Windows, Windows API, Pascal


Скриншот к примеру
Windows, Windows API, Pascal


Скриншот к примеру
JavaScript, WEB, Windows


Скриншот к примеру
SFML, Windows, C++


Скриншот к примеру
Open GL, Windows, Pascal