Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Вычислительная геометрия

Данный алгоритм позволяет строить эллипсы на сновании координат центра фигуры и длин большей и меньшей полуосей.
Алгоритм является модификацией алгоритма для генерации окружностей.

С помощью данного алгоритма можно заполнить (зарисовать) любую окружность.

Теоретическое обоснование метода заключаются в использовании свойства квадрата и теоремы Пито: " в выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны ".

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами AB и AC. То есть ее знак зависит от порядка перечисления вершин.


Рисунок №1

Суть алгоритма поиска в ширину в том, что мы обходим связный граф таким образом, что сначала мы рассматриваем родителя, потом по очереди рассматриваем его предков, потом рассматриваем предков его предков и т.д.
Порядок обхода вершин графа.

Можно объяснить алгоритм двумя способами:

Пусть на плоскости задано некоторое количество точек. Оболочкой множества данных точек называется любая замкнутая линия, которая содержит в себе все эти точки.
Соответственно минимальная выпуклая оболочка - это такая оболочка, которая является выпуклым многоугольником наименьшего периметра.

Это один из простейших алгоритмов удаления невидимых поверхностей. Впервые он был предложен Кэтмулом. Работает этот алгоритм в пространстве изображения.

Предположим, что нам необходимо определить принадлежность точки а полигону р. Для этого из некоторой удаленной точки проведем прямую линию в точку а. На этом пути может встретиться нуль или несколько пересечений границы полигона: при первом пересечении мы входим внутрь полигона, при втором — выходим из него, при третьем пересечении снова входим внутрь и так до тех пор, пока не достигнем точки а. Таким образом каждое нечетное пересечение означает попадание внутрь полигона р, а каждое четное — выход из него.

Алгоритм закраски с затравкой

С помощью этого алгоритма можно закрашивать любые замкнутые области. Исходными данными для этого алгоритма являются цвет границы области и точка, принадлежащая этой области (т.н. затравочный пиксел). Суть метода заключается в следующем: мы берём затравочную точку и закрашиваем её. Для каждого незакрашенного соседа мы выполняем аналогичную процедуру. Т.о. мы получаем рекурсивный алгоритм, описание которого на псевдокоде представлено ниже:

1. Поместить затравочный пиксел в стек;
2. Извлечь пиксел из стека;

Алгоритм Ву — это алгоритм разложения отрезка в растр со сглаживанием. Был предложен У Сяолинем (Xiaolin Wu, отсюда устоявшееся в русском языке название алгоритма) в статье, опубликованной журналом Computer Graphics в июле 1991 года. Алгоритм сочетает высококачественное устранение ступенчатости и скорость, близкую к скорости алгоритма Брезенхема без сглаживания.

См. исправленный алгоритм Брезенхема построения окружности здесь https://cgraph.ru/node/308

Во многих областях приложений, таких как, например, системы автоматизированного проектирования машиностроительного направления, естественными графическими примитивами, кроме отрезков прямых и строк текстов, являются и конические сечения, т.е. окружности, эллипсы, параболы и гиперболы. Наиболее употребительным примитивом, естественно, является окружность. Один из наиболее простых и эффективных алгоритмов генерации окружности разработан Брезенхемом.