Уроки, алгоритмы, программы, примеры

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

У меня проблема вот с этим: gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);. Вылезает ошибка: CS1061 "object" не содержит определения "GL_COLOR_BUFFER_BIT", и не удалось найти доступный метод расширения "GL_COLOR_BUFFER_BIT",...
Большое спасибо. Единственный код который прошел без каких либо ошибок. Ура!!!
Скажите пожалуйста, подскажите алгоритм по которому по заданным точкам можно определить тип многогранника, скажем это куб или прямоугольный параллелепипед. Нашел теорию по этим фигурам: https://www.mat... https://www.mat... Акцентировать внимание...
Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Windows

Скриншот к примеру
Среда программирования: 
IntelliJ IDEA

Горизонтальные и вертикальные линии не нуждаются в сглаживании(рисуем их отдельно). Для остальных линий выбираем основную ось и идём вдоль неё, подбирая координаты по оставшейся(неосновной) оси. На каждой итерации устанавливаем две точки - рассчитываем величину ошибки и видим, как сильно ушли пиксели от идеальной линии по неосновной оси, на основе этих данных распределяем интенсивность между выбранными точками.

Скриншот к примеру
Среда программирования: 
PascalABC.NET
Статья по теме: 

Программа рисующая Обнаженное обдуваемое ветром дерево Пифагора, написанная на Pascal с использованием модуля GraphABC.

Скриншот к примеру
Среда программирования: 
IntelliJ IDEA
Статья по теме: 

Задача: Определить, принадлежит ли точка выпуклому многоугольнику.
Алгоритм: Выберем произвольную точку ( кликом мышки ).
Используя векторное произведение, проверим по очереди в порядке обхода сторон по часовой стрелке, лежит ли точка слева от очередного вектора - стороны многоугольника
( откладываем вектора: от i-й вершины к i-1-й вершине, и от i-й вершины к выбранной точке).
Если векторное произведение неотрицательно, значит точка лежит слева от стороны многоугольника, либо на стороне. Если это выполняется для каждой из сторон, то точка лежит внутри многоугольника.