Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Всем у кого не работает. файл wizard.script Ещё одно упоминание Glut32 в строке "if (!VerifyLibFile(dir_nomacro_lib, _T("glut32"), _T("GLUT's"))) return false;" меняем на "if (!VerifyLibFile(dir_nomacro_lib, _T("freeglut"), _T("GLUT's"))) return...
Не получается, емаё
огромное спасибо за подробное объяснение про 3д графику на питоне, в интернете очень мало подобной информации
dobryj den, popytalas otkryt prikreplionnyj fail ctoby posmotret kak rabotaet, no mne ego ne pokazyvaet vydajet osibku. Pochemu?
Очень интересно! ии сайт крутой жалко что умирает(

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Векторное произведение — это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R3 называется вектор c, удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c=[ab]=[a,b]=a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения:
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения [ab] равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e — единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e — правая, а S — площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
[a, b]=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c — какой-нибудь вектор, π — любая плоскость, содержащая этот вектор, e — единичный вектор, лежащий в плоскости π и ортогональный к c,g— единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
[a, c]=Prea•|c|g
где Prea проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c. Такое произведение трех векторов называется смешанным.
V=|a•(b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b•c=a•b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее — представлены в ортонормированном базисе
a=(ax,ay,az)
b=(bx,by,bz)
а система координат правая, то их векторное произведение имеет вид
[a, b]=(aybz-azby,azbx-axbz,axby-aybx)
Для запоминания этой формулы :
[a,b]i=∑εijkajbk
где εijk— символ Леви-Чивиты.