Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

огромное спасибо за подробное объяснение про 3д графику на питоне, в интернете очень мало подобной информации
dobryj den, popytalas otkryt prikreplionnyj fail ctoby posmotret kak rabotaet, no mne ego ne pokazyvaet vydajet osibku. Pochemu?
Очень интересно! ии сайт крутой жалко что умирает(
У Вас число превысит максимальное число int. Можно использовать в Вашем случае uint, но лучше все переписать на double.
Добавление к программе строки glutReshapeFunc(changeSize); приводит к тому, что треугольник перестаёт совсем отрисовываться.

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Linux

Скриншот к примеру
Среда программирования: 
JavaScript

Программа реализует операции преобразования фигуры на плоскости, описанные в статье: параллельный перенос, поворот, масштабирование.

1. Файл grapher.html содержит HTML скелет программы: подключение необходимых библиотек, создание canvas'а для рисования и элементов управления графиком.

<!DOCTYPE html5>
<html>
	<head>
		<meta charset="utf-8">
		<link rel="stylesheet" href="grapher.css">
		<script type="text/javascript" src="lib/jquery.min.js"></script>
		<script type="text/javascript" src="lib/jcanvas.min.js"></script>

Скриншот к примеру
Среда программирования: 
Lazarus 1.2.4

Задача : построить (растеризовать) эллипс, зная координаты его центра и длины меньшей и большей полуосей a и b соответственно.
Суть алгоритма : использование модифицированного алгоритма Брезенхема для построение окружности . Как и в оригинальном алгоритме Брезенхема, выбор ближайшей точки основан на анализе знаков управляющих
В поля "X" и "Y" вводятся координаты центра окружности, в поля "a" и "b" — длины соответствующих полуосей.

Скриншот к примеру
Среда программирования: 
Eclipse Mars.2(4.5.2)

Задача: определить, принадлежит ли точка многоугольнику.
Для запуска приложения на Linux достаточно открыть файл is_in_polygon(см. архив во вложении), предварительно сделав его исполняемым(chmod +x либо Свойства-Права-Разрешить исполнять как программу). После запуска появится белое окно, в заголовке которого отображаются координаты последнего нажатия левой кнопки мыши(начальные значения x = 0, y = 0). По щелчку левой кнопки мыши в произвольном месте окна на месте нажатия рисуется точка и проводится линия из предыдущей точки в новую(если указаны хотя бы 2 точки), таким образом можно построить любой многоугольник. При нажатии клавиши Enter завершается построение многоугольника(многоугольник нельзя будет больше изменить), последняя точка соединяется с первой.

Скриншот к примеру
Среда программирования: 
Eclipse Mars.2(4.5.2)
Статья по теме: 

Задача: построить алгебраический фрактал — биоморф. Биоморф, изображенный на скриншоте, получен путем многократного возведения в куб числа z = 0.01 • (x + iy) по формуле
z(n) = z(n - 1)3 + constant,
где x и y пробегают множество всех точек, принадлежащих окну, constant = 1.07 + 0.0001 • i.

Скриншот к примеру
Среда программирования: 
Eclipse Mars.2(4.5.2)

Задача: Используя алгоритм триангуляции разбить невыпуклый многоугольник на треугольники. Закрашивать треугольники, полученные при разбиении, через один. Первый закрашиваем, второй - нет и т.д.
Алгоритм триангуляции, рассматриваемый в данной статье, основывается на том, что n-угольник может быть разбит на n-2 треугольника путем проведения n-3 хорд. Для удобства реализации дополнительно были введены классы List(кольцевой двусвязный список) и Node(узел списка).

Скриншот к примеру
Среда программирования: 
Qt
Статья по теме: 

Детали фрактала

Изначально есть лишь буква Н, затем к каждому из концов этой буквы пририсовывается точно такая же буква Н, но в два раза меньше, и так далее.
Известно, что Н-фрактал заполняет свой квадрат и его фрактальная размерность равна двум.

Принцип построения данного фрактала используется в проектировании микросхем.
Если рисовать толстые буквы Н, то получается дерево Мандельброта.
Принцип построения Н-фрактала очень похож на пострение Т-фрактала.

Скриншот к примеру
Среда программирования: 
Qt

Хотелось бы объяснить использование OpenGL в Qt для вращения трехмерной фигуры.
В данном примере приведен измененный код из статьи "Введение в OpenGL на Qt/C++" для отрисовки разноцветного икосаэдра.
Цвета задаются рандомно, а сама отрисовка производится через встроенные функции отрисовки по массивам координат.

Скриншот к примеру
Среда программирования: 
HTML 5 + JavaScript

Задача - построить минимальную выпуклую оболочку для множества точек на плоскости.