Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

КРУГОВОЙ ФРАКТАЛ -ОШИБОЧНАЯ ПРОГРАММА! ПАПА ЗибЕрт
Можешь обяснить подробно что как работает, и почему массу не задаем
Здравствуйте, Ильгиз. Математика - царица наук (Карл Гаусс). Изучение математики начинается с детского сада, когда нас учат считать и выполнять простые арифметические операции. Любой, даже самый простейший алгоритм будет связан с арифметическими...
Я хотел узнать математика это обязательно в программирование. Пять лет назад просто из любопытства я увлекся HTML потом изучил CSS и JvaScript потом изучил PHP и Java. Как то не задумывался и начал смотреть форумы и узнал что без математики не...
Все верно, но так же необходимо зайти в: Компоновщик -> Ввод -> Дополнительные зависимости Здесь необходимо нажать изменить и в Дополнительные зависимости прописать это: SDL2.lib SDL2main.lib SDL2test.lib Без этого не заработает. (MVS 2015)

Счетчики и рейтинг

Яндекс.Метрика Рейтинг@Mail.ru

Допустим нам дана задача - построить правильный n-угольник. Правильным многоугольником считается тот, у которого все углы равны и все стороны равны.

Алгоритм очень прост.
Центральный угол окружности составляет 360º.
1. Делим 360º на n равных частей.
2. Проводим лучи до пересечения с окружностью.
3. Соединяем точки пересечения.
Полученный многоугольник является правильным n –угольником.

Следующий алгоритм построения правильных многоугольников основан на свойствах описанной окружности около правильного многоугольника и вписанной в правильный многоугольник.

Теорема 1. Около любого правильного многоугольника можно описать окружность, и притом только одну.

Теорема 2. В любой правильный многоугольник можно вписать окружность, и притом только одну.

Следствие 1. Окружность, вписанная в правильный многоугольник, касается
сторон многоугольника в их серединах.

Следствие 2. Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в этот многоугольник

Для построения правильных n – угольников при n › 4 обычно используется окружность, описанная около многоугольника.

Демонстрационные примеры по теме