Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Я код на C++ набрал сам. Строил кривую Безье, но "прилипал" к нулю. То есть я задаю точки далеко от нуля, а он строил из нуля, а потом только обходил предложенные точки. Потом я нашёл Ваш сайт и эту статью. Оказалось, что я забыл возвести t в...
просто я не так понял, здесь мы вращаем точки куба что вращает сам куб. Мне нужно вращать просто 3д объект , данный способ не подходит
Задавайте объект в мировых координатах. Вращайте его относительно мировой системы координат. А при отрисовке преобразуйте в экранные координаты. Посмотрите пример преобразования в экранные координаты.
Это вращение по мировым осям ? Если да то как сделать по осям объекта ?
Добрый вечер! Область прорисовки остается пустой. Чего-то не хватает. Объясните плз, чего? Рамиль.

Счетчики и рейтинг

Рейтинг@Mail.ru

Построения на плоскости (2D)

Спрайтовая анимация — одна из тех вещей, которые при всей своей примитивности успешно работают и применяются в компьютерной графике и играх уже больше четверти века. Даже в трехмерных играх есть спрайты — например, билборды взрывов. Во многих браузерных и флеш-играх применяют именно спрайтовую анимацию, так как она очень проста и не требует высокой производительности — просто переключай кадры и все!

Кривые Безье

Кривые Безье используются в компьютерной графике для рисования плавных изгибов, в CSS-анимации и много где ещё.
Несмотря на «умное» название – это очень простая штука.
В принципе, можно создавать анимацию и без знания кривых Безье, но стоит один раз изучить эту тему хотя бы для того, чтобы в дальнейшем с комфортом пользоваться этим замечательным инструментом. Тем более что в мире векторной графики и продвинутых анимаций без них никак.

Виды кривых Безье


Многочлен Ньютона интерполяционный – как и другие интерполяционные формулы, служит для построения многочлена n-й степени, который совпадает в (n+1) точке co значениями неизвестной искомой функции у = f(x).

Пусть даны два отрезка. Первый задан точками P1(x1;y1) и P2(x2;y2). Второй задан точками P3(x3;y3) и P4(x4;y4).

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Допустим нам дана задача - построить правильный n-угольник. Правильным многоугольником считается тот, у которого все углы равны и все стороны равны.

Алгоритм очень прост.
Центральный угол окружности составляет 360º.
1. Делим 360º на n равных частей.
2. Проводим лучи до пересечения с окружностью.
3. Соединяем точки пересечения.
Полученный многоугольник является правильным n –угольником.

Векторное произведение — это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения.

Разработка NURBS (Неоднородный рациональный β-сплайн, NURBS (англ. Non-uniform rational β-spline, читается «нурбс»)) началась в 1950-х годах инженерами, которым требовалось математически точное представление поверхностей произвольной формы (таких как корпуса кораблей, самолётов, космических аппаратов и автомобилей) с возможностью точного копирования и воспроизведения всякий раз, когда это нужно. До появления представлений такого рода дизайнер создавал единичную физическую (материальную) модель, которая и служила эталоном.

Общее уравнение прямой:

Ах + Ву + С = 0,

где А и В не равны нулю одновременно.

Коэффициенты А и В являются координатами нормального вектора прямой ( т.е. вектора, перпендикулярного прямой ). При А = 0 прямая параллельна оси ОХ , при В = 0 прямая параллельна оси ОY .

При В≠0 получаем уравнение прямой с угловым коэффициентом:

Для описания произвольного перемещения фигуры на плоскости необходимо рассмотреть несколько простейших движений, таких как параллельный перенос, поворот относительно оси и зеркальное отражение относительно оси и точки (полюса), потому что любое сложное движение всегда можно представить как совокупность простых движений.