Уроки, алгоритмы, программы, примеры

Вход на сайт

Материалы по разделам

Построения
на плоскости (2D)
Графика
в пространстве (3D)
Вычислительная
геометрия
Физическое
моделирование
Фрактальная
графика

Новые комментарии

Рекурсия присутствует?
И где эти прикрепленные файлы?
Я код на C++ набрал сам. Строил кривую Безье, но "прилипал" к нулю. То есть я задаю точки далеко от нуля, а он строил из нуля, а потом только обходил предложенные точки. Потом я нашёл Ваш сайт и эту статью. Оказалось, что я забыл возвести t в...
просто я не так понял, здесь мы вращаем точки куба что вращает сам куб. Мне нужно вращать просто 3д объект , данный способ не подходит
Задавайте объект в мировых координатах. Вращайте его относительно мировой системы координат. А при отрисовке преобразуйте в экранные координаты. Посмотрите пример преобразования в экранные координаты.

Счетчики и рейтинг

Рейтинг@Mail.ru Яндекс.Метрика

Фрактальная графика

Бро́уновское де́рево является формой компьютерного искусства, которое было популярно в 1990-х, когда домашние компьютеры стали обладать достаточной производительностью для моделирования броуновского движения (отсюда и название). Броуновские деревья — математические модели древовидных структур, связанных с физическим процессом, известным как агрегация, ограниченная диффузией.

Фрактал Висекка, также известный как снежинка Виссека – фрактал, возникающий из конструкции, подобной конструкции ковра Серпинского, предложенной Томасом Висекком, является одним из двух коробочных фракталов. Он имеет приложения, в том числе пересекающиеся с компактными антеннами, особенно в сотовых телефонах. На данном рисунке изображен фрактал на пятой итерации.


Кривая Госпера, известная также как кривая Пеано-Госпера, названная именем Била Госпера, — это заполняющая пространство кривая. Кривая является фрактальной кривой, подобной кривым дракона и Гильберта. На рисунке приведена четвёртая стадия кривой Госпера.

Круговой фрактал — класс геометрических (конструктивных) фракталов, построенных многократным вписыванием в окружность других окружностей меньшего радиуса.

Если посмотреть на многие вещи в природе, вы заметите, что они являются фрактальными. Они имеют различные уровни детализации. Типичным примером является очертание горного хребта. Оно содержит значительные различия в высоте (горы), средние изменения (холмы), небольшие вариации (валуны), крошечные изменения (камни) и так далее. Посмотрите на что угодно: распространение пятен травы на поле, волн в море, движение муравьев, движение ветвей дерева, узоры из мрамора, ветра. Все эти явления поддаются той же схеме, в больших и малых вариациях.

Фрактал Слово Фибоначчи -- самоподобная фрактальная кривая, реализующая Слово Фибоначчи с помощью простого и интересного начертания. Этот фрактал демонстрирует три типа узоров и большое количество самоподобностей, тесную связь с числами Фибоначчи.


Фрактал "Звезда Дюрера" или "Пятиугольник Дюрера" был назван в честь немецкого живописца и графика Альбрехта Дюрера. Именно он в 1525 изобретает правило построения правильного пятиугольника.

Пример фрактала правильного пятиугольника.

Данный фрактал строится на основе произвольного треугольника.

Построение:

Находится центр масс произвольного треугольника, далее к нему проводятся отрезки из вершин треугольника, тем самым разбивая его на три новых треугольника. После этого процедура применяется рекурсивно к полученным треугольникам.

Свойства:

Упаковка Лейбница (Аполлониево Множество) впервые была описана в письме Лейбница к де Броссу:

"...Представьте себе окружность, а затем впишите в нее еще три окружности наибольшего возможного радиуса, конгруэнтные друг другу: повторите аналогичную операцию с каждой из этих окружностей и с каждым промежутком между ними. А теперь вообразите, что этот процесс продолжен до бесконечности..."